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I. Introduction

Spinning projectiles containing liquid payloads have shown spectacular instabilities in
flitt. The first theoretical work by Stewartson[ll in 1959 showed that a spinning inviscid
4quid could exert a very large side moment for certain values of r, the ratio of coning rate

to spin rate (symbols are defined in the List of Symbols near the back of this report). In
1963 WcdcmeyerE2l added a boundary layer on the container walls; his predicted values of
the resonant side momen. were verified by experiments using gyroscopes. This Stewartson-
W\cdcme- er (SW) boundary-layer theory was originally limi'ed to pressure moments, fully-
or partially-filled cylindrical cavities, and fully spun-up liquids. Later authorst1 -" extended
the theory to include central rods, viscous moments, partially spun-up liquids, two immis-
cible liquids, and fully-filled spheroidal cavities. In addition, a relation between liquid
side moment and liquid roll moment was derivedil to justify experimental observation of
a correlation between these moments.

In 1978 Kitchens, Gerber and Sedney[l") developed a hybrid linear Navier-Stokes the-
ory (hereafter callei KGS) that satisfied the boundary conditions on the cylindrical wall
exactly by solving a sixth-order system of ordinary differential equations. but it required
the addition of boundary layers on the end-walls to satisfy the no-slip condition on these
wails. This hybrid high-Reynolds-number theory has been extended to predict the com-
plete moment exerted by both fully spun-up liquidsll 1421 and partially spun-up liquids.[13,141

For very low Reynolds numbers (Re < 100), Vaughn et a&.0"l), Strikwerda et al.11s,171
and Rosenblat et al.1t8s have developed Computational Fluid Dynamics (CFD) codes to
predict moments for a fully-filled cylinder coning at a constant angle, These predic-
tions showed good agreement with experiments, but this CFD approach requires consider-
able time on large computing machines. Herbert[1 °'2°1 developed an approximate spectral
method that requires rather modest computational effort and gives good agreement with
the more precise CFD results for Re < 100.

Hall, Sedney and Gerber(Ml have recently modified the hybrid Na-ier-Stokes theory
$o eliminate the approximation of the end-wall boundary conditions. This was done by re-
placing the simple Stewartson-Wedemeyer spatial eigenvalues by special eigenvalues whose
eigenfunctions can be combined to satisfy all the boundary conditions. Once a table
of eigenvalues has been constructed, this HSG niethod can compute liquid moments for
Re < 2500 on VAX 8600-size computers in less than five minutes. These computations
show exce .ent agreement with the CFD calculations[221 for Re < 100 and good agreement
with the boundary-layer theories for Re > 2000.

The KGS and HSB theorics are limited to a fully-filled cylindrical container performing
constant-amplitude coning motion. In this report, we will extend these theories to partially-
filled cylinders and to cylinders with a central rod. We will also allow the amplitude of the
motion to change slowly. Next, we will extend the theories to the case of two immiscible
liquids.

In the implementation of the SW, KOS and HSG theories, the liquid moment has
usually been computed by integrating the pressure and wall shears over the surface of the
cylindrical container. A mathematically equivalent approach is to integrate the angular
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momentum over the liquid volume and then differentiate this integral. It will be shown that
for the essentially exact HSG theory, the two methods - surface and volume integration
- yield the same value for the liquid moment. However, for the less exact SW and KGS
theories, the volume integral method gives much 'better' moment values, in the sense that
they are in closer agreement with HSG results. Indeed, using the volume integral, the
SW theory adequately approximates HSG results down to Re = 500 and KGS adequately
approximates HSG down to Re = 1.

II. Equations of Liquid Motion

We will consider a projectile with a cylindrical cavity of radius a and height 2c and
hence of fineness ratio A = c/a. The axis of the cylinder is collinear with the projectile's
axis and the cylinder center of mass is located a distance h from the projectile's center of
mass. For simplicity, we will assume that h = 0; the effect of a nonzero h will be considered
in Appendix A.

Ti the cavity is only partially filled, if the liquid is fully spun-up and if the centrifugal
force is large compared to the aerodynamic forces, then in the absence of coning motion
the liquid will fill the space between the outer cylindrical wall and an inner cylindrical free
surface of radius b. The ratio of the volume of this inner cylinder to the volume of the
payload cavity is b2/a 2 . The fill ratio for the payload cavity is thus 1 - b2/a 2.

In addit'on t•; fully and partially filled cylindricai payload cavities, the case of a
cylindrical cavity with a central rod of radius d can be easily treated by the linear theory.
The annular region between the inner and outer cylindrical walls will be considered fully
filled with liquid.

Although the differential equations of motion are most conveniently expressed in earth-
fixed coordinates, the boundary conditions are best expressed in cylindrical coordinates
aligned with the projectile's axis of symmetry. Symmetry-axis coordinates have one free
parameter: angular velocity about the symmetry axis. If this angular velocity is chosen
to be the projectile's spin rate, the system is the usual missile-fixed coordinate system. If
this angular velocity is chosen to be zero, we have the nonspinning aeroballistic system
used in the flight mechanics of symmetric missiles[M3.

Earth-fixed axes X,, Y,, Z. are selected so that X. is init;ally along the velocity vector'
and the X-axis of the missile-aligned system will be along the projectile's axis of symmetry.
The angle between the X and X. axes is the total angle of attack, at. The angle between
the Z,-axis and the normal to the plane formed by X and X, will be called 0,,, where • is
the precessional rate of the angular motion performed by the projectile about 'he 'velocity
vector.

Although the angular motion of a projectile does not in general have a constant pre-
cessional rate, it can be shown that the linear motion is the sum of two circular motions
with constant precessional rates. The objective oi all liquid payload theories is to predict

1 In thi report, we a urn that the velocity vector mraintaim a conotai direction. The .&ca o( aerodynamic forces and
p'avity a• given in Reference (231.
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the liquid moment response to constant-precession angular motion. For these theories,
projectile-aligned coordinates that rotate at the precessional rate (coning aeroballistic co-
ordinates) are especially convenient since the boundary conditions are then independent
of time.

Let (4X, •v, i.) be unit vectors in the earth-fixed system and let (i., • , i,,) be utnit
vectors in the coning aeroballistic system. These unit vectors are related as follows:

ezc = - sin $ +cos +i (3)

where
K=sin at, f =cosat

The angular velocity d of the coning aeroballistic coordinate system is defined by the
relation

(e=1 evc, C") = X w× ( ic, &, ,") (4)

It can be easily verified that

= rý[, - (eK_/y)i] (5)
4 y~+ KýV (6)

where

* ý is the projectile spin rate relative to an inertial frame;

* T = r the ratio of the precessional rate to the spin rate; and

* K = Koe(". Hence erT = K'/K and we see that e is a measure of the logarithmic
damping during a precession cycle. Zero e denotes constant-amplitude coning motion.

Cylindrical coordinates will be denoted by (z, r, 9) in the earth-fixed system and by
(1, F, 4) in the coning aeroballistic system. (For convenience, we will assume that all length
variables have been made dimensionless by division by the radius a.) From Eqs.(1-3), we
have

x = 'Yi+fKeos4 (7)

rcos0 = i[cos(, + •-)+(Q - ))cos~cos.]- •-Kcoso. (8)
rsinO = F[sin(i + 4's) + (7 - 1)cosesinO,]- •Ksino, (9)

For small K, Eqs.(7-9) reduce to

+ = i+vcR(Ke-} (10)
r = F- !R{Ke-'4) (11)

sin(4 - 4') = -(i/•)R{iK-'; (12)

3



where

4, = ,~

and where R{ I denotes the real part of a complex quantity.

The coning cylindrical components of the velocity of a point on the projectile are
given by

S=o (13)
r =0 (14)

•= F(1 - r) (15)

The earth-fixed cylindrical components of the velocity can be obtained by differentiating
Eqs.(10-12):

V. = a4R{i(f - 1)rK*} (16)

V, = -a&R{i(f - 1)xK°} (17)

Vs = a4,[r - R{(f - 1)xK'}] (18)

where

K" = Ke-i* = Koci(f')
f z2 (1- i)r

We will now make the very restrictive assumption that the liquid is in steady-state
response to the coning and spinning motion of the projectile. Theoretical studiesP5 ,4 1 have
been made and are in progress to determine the effect of partially spun-up liquid, and an
experimental study[2"I has been L-ade of the transient response to coning motion. These
studies show that spin-up and cone-up effects are large and important to a complete
understanding of the liquid-payload stability problem.

Nevertheless, we will maume that the liquid velocity components and liquid pressure
have the same dependency on time and 6 as do the velocity components of points on the
projectile. Accordingly, we introduce three dimensionless complex perturbation velocities:
tu, U, each a function of r and z, and write:

V. = -a4Rfu/," (19)
V, = -a4R{f,"K (20)
V# = a•[.r-R {iK, ] (21)

The equilibrium pressure for a spinning non-coning cylinder is

Pq = PO + P122[, r 2 [ (o !_r <1) (22)

where

L 
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"* ro is either b/a or d/a,

"* PL is the liquid density.

When the cylinder is performing coning motion, the outer cylindrical wall is located at
r = 1. The equivalent earth-fixed radial coordinate of the wall is

ro = 1 - R{xK'} (23)

The expression for the earth-fixed radial coordinate of a central rod is similar in form to
(23):

r, = o- R(zK"} (24)

For a coning, partially filled cylinder, the free surface of the liquid is a slightly perturbed
version of a cylindrical surface of radius ro:

,- = ro[1 - R,{.Z(x)K*}] (25)

To determine I, note that the free surface moves with the radial velocity of the liquid at
r = ro. Hence differentiation of Eq.(25) yields

v, = -roR{[i.(x)(af4 -- V,/ro) - _YV, K'} (26)

Thus . ro, )(

(I- Blfro (7

The complex liquid pressure perturbation function p is, therefore, defined by the relation

P = pO + pLa. Y r -2_ rP2 _ RCK')] (r,,r/ < ,5 r) (28)

The linearized Navier-Stokes equations for these perturbation functions are

o,. r 4- = 0 (29)

i(f=- 1)u- 2m = - +  2+ + 1 2(I- iv) (30)

/(f -1).u +2u =f !E'+r 1 [.v-+z+~ ]2t -~Z2~u i) (31)

r Re or2 O9X 2  r or r2]
OE 1 [FO~i 8•u 1Ou tol

i(f -1)w. -- -,O +• 1 _• M'r (32)

Each of the four perturbation functions can now be assumed to be the sum of products of
two variables: the first a function of r alone and the second a function of x alone:

N

=(1 - f)rHo(x) - , tbk(r)Hk(x) (.3)

+ = I Go(x) + E A,(r)Gk(x) (34)
k=O



'- = - L J Go(x) + • k (r)Gk(x) (35)
k=0

N

-(1 - f)2 rGo(x) + E)Pk(r)Gk(x) (36)
k=O

In References [4, 10-12),

for Ao=0, Ho = 1 aid G 0o=z (37)

for Ak O 0, Hk = cos(AkX) and Gk = sin(Akx) (38)

while in HSG, Reference [21],

for Ao = 0, Ho = 1 and Go = x (39)

for Ak : 0, Hk = cos(AkX)/ sin(Ak4A) and Gk = sin(AkX)/ sin(AkA) (40)

The Aks are complex parameters arising from this classical separation-of-variables tech-
nique and will be evaluated so as to help satisfy the boundary conditions. (The values so
determined will be referred to as eigenvalues.) The coefficients of H0 and Go in Eqs.(33-36)
are special perturbation functions for A0 = 0. In the low-viscosity theories of References
[4, 10-12]:

d'0 = rio = '3o = =0 (41)

Eqs.(33-36) can be substituLed in Eqs.(29-32) to obtain

rfl', + 6k• - ik + Akirtbk = 0 (42)
( -e)'[0k'"+ t4/r - (B + r- 2 )f1k] + 2[1 + i(r 2 Re)-']Ji = Ik (43)
(Re)' [6 + b'/r - (B + r-2)b3& - 2[1 + i(r 2 Re)-j]h& = -ipk/r (44)

(- k)1 [' + ht3/r - Btbkk = - •k2i•k (45)

where

B = r '+ -+-i(1-f)Re
Ao, = 0

Ao. = 1

Ak = Ak 2 = A k, k$j40

( )' = d( )/dr

These equations can be put in canonical form by the introduction of six new sets of
variables Zk that satisfy the differential equations and a set of constuit multipliers ck that
will he used to satisfy the boundary conditions:

fckZlk(r) = fi (46)

fckZ~k(r) = t&k - ik (47)

fckZlk(r) = 6 (48)

fckZ 4k(r) = tbk (49)

fCkZsk(r) = (50)
fckZ.,k(r) = 3k (51)

[8



For these new variables, Eqs.(42-43) become

Z k = -Z2k/r - AkIZ 4 k (52)

Z2k = -Z 2k/r - AkI Z4k - iZ3k (53)
S - 2(Re + ir- 2)Zlk + i(B + r- 2 )(Z2k Zik)

Z3k = (C+ rZk

-Z~kl. - (iRelr)Z6k (54)

Zk = ZSk (55)
Z'k = BZ4k - ZSk/r - k2ReZ 6  (5)

Z6 k= (Re)- 1 [-BZlk + (2iRe - r- 2 )(Z2k - Zlk)

+iZ3k/r - \klZs/, (57)

III. Boundary Conditions

The boundary condition on each wall of the container is that the liquid must have the

same velocity as the wall:

On the cylindrical wall (F = 1)

w(1,z) = i(1-f) (58)
X(1,x) = -i(1 -f)x (59)

X(1,x) = -(1- f)x (60)

while on the two end-walls (I = :k A)

wl(r, ±A) = i(1 - f)r (61)
,(,-, ±A) = :i(1 - f)A (62)
Y(r,+±A) = :I:(1 - f)a (63)

For a fully-filled container, the conditions on the axis are[10O

,,(O, X) = ,,(O,Z) - i,(0, X) = 2(O, X) = 0 (64)

On the free boundary of a partially filled container, the tangential shear should vanish and
the normal stress should be the inner pressure, P0.

(Re)_ [o%(r_, x) i[u(ro, x) - ivt(ro,)x)] =0 (65)
Lr 0zO.U~~(7oX) Ou(ro,x) = (8

(R)1  Or + Ox

2(ro, X) + irou(ro, x) - 2(Re)- OU(ro,) -- 0 (67)
1-f Or

The no-slip conditions at the rod reduce to:

Ug(ro,z) = (1 -f)ro (68)
urZ) = -i(1-f)x (69)

=tz) = -(1-f): (70)

7



IV. Low-Viscosity Solutions

For high Reynolds numbers (Re > 5000), three distinct solutions have been obtained

to the preceding differential equations and boundary conditions:

1. Stewartson (S) inviscid solution;

2. Stewartson-Wedemeyer (SW) inviscid solution modified by wall boundary layers;

3. Kitchens-Gerber-Sedney (KGS) linear Navier-Stokes solution with end-wall boundary
layers.

In all three methods, co = 0 and the A0 perturbation function for w is i(1 - f)r, a choice

that satisfies the inhomogeneous normal end-wall boundary condition, Eq.(61).

1. Stewartson (S) Solution

For infinite Reynolds number, Eqs.(52-57) reduce to:

Zlk = -Z 2 k/r - AkZ 4k (71)
Z6 = -i(1 + f)Zlk + 2iZ2k (72)

(1 + f)Zlk iZik
Z21 = (1f) (73)

1 f ( - fr
Z31, -iA (74)1-f

{ i,) +[L- ] Z.,} (1- f)- (75)

zsh = (1 - f (3 - f)(1 + f)Z1k - 2ý] (76)

The normal velocity at the flat end-walls, Eq.(61), can be satisfied by

ck = 0, k = 2,4,6,... (77)

Ak = 2"r' k =-1, 2,3, ...N (78)
FA'

Since the perturbation functions vanish for even k, we will take N to be odd and consider
only the (N+1)/2 odd k values 1,3,5,...,N both in this section and in the discussions of
the SW and KOS solutions that follow. It is interesting to note that the second-order
differential equation for Z. that can be obtained from Eqs.(71-74):

I_, + Z_,_ + (1 )-)2 -

is essentially Bessel's equation of order 1. Thus the six Zjh's are linear combinations of the
Bessel functions J, and Y1 and their derivatives; these combinations are given in Table 1.

8



Next, the normal velocity at the cylindrical wall, Eq.(59), can be satisfied by Eq.(34)
when

Zik(l) = 1, Ch = lak (80)
where

-2i(1 - f)

1+f

and where the ak's are the coefficients of a least-squares fit of x to a sine series:
N

x akGk(x)
k=1

Since ak = 0 for k even, the ck's of Eqs.(77) and (80) are compatible.

The second boundary condition for Eqs.(71-74) is

(a) for a fully-filled cylinder:
Z6k(0) = 0 (81)

(b) for a partially-filled cylinder:

Zk(ro) + iroZlk(ro) irof (82)
i - f 2

(c) for a cylinder with a central rod:

Z,1(ro) = 1 (83)

2. Stewartson-Wedemeyer (SW) Solution

The Stewartson inviscid solution couldn't satisfy the tangential velocity conditions on
the container walls. In 1965 Wedemeyer introduced three oscillatory boundary layers on
these walls. These boundary layers created small viscous contributions to the liquid mo-
ment, but more importantly they modified the larger inviscid pressure moment term. The
boundary layers caused an outflow velocity that changed the normal velocity conditions
for the inviscid solution. The presence of the boundary layers on the end walls modifies
the eigenvaiues, Ak, and the Fourier coefficients, ck (see Appendix C). The boundary layer
on the lateral, cylindrical wall modifier the boundary condition on Z1A(1) (see Appendix
D). Equations (59) and (61) for the inviscid velocity become:

6.e2 OCI.(1,z)
(1, X) - 1 - 6.e 2  &r =

u4.(r, ±A) - 6 O, .(r, ±A) - i(1 - f)r (85)

where

1+i

°- 2(1-f)Re

79



-(1 +i) 1+f i(3-f)1
C = 2(1-f)v/2'R- ---7 V V/7+7

1 - n = 1 for a central rod; 2 otherwise
e2=1 + n is

el = exp[(ro- 1)/3o1

For the central rod, a fourth boundary layer modifies Eq.(69):

,u (ro,.r) + (r 0 6oe2 O+(r 0 - -i( - f)X (86)

Eqs.(84-86) change Eqs. (78,80,83) to the following:

cos(AkA) + Akac sin(AkA) = 0, (k odd) (87)

Zik(1) -S e2Z'k( = 1 (88)
1 - ý',e 2

Zik(ro) + ro±6ae2) Zk(ro) = 1 (89)

A good approximate solution of Eq.(87) for the eigenvalues is given by

A•k ;z = (90)
2(A -6bc)

Eq.(90) yields estimates for solving Eq.(87) iteratively for exact values of Ak. The ap-
proximation (90), however, is only valid for fSca << A, in which case the cosine in (87) is
nearly zero. For low Reynolds numbers, a solution of Eq.(87) exists for which the cosine
has significantly larger magnitude.["]l An adequate first estimate of this special eigenvalue,
is given by

A, - ±il/6 for IA. - 11 > 0.1 (91)

where the sign is chosen so that the real part of A, is positive (usually the minus sign for
r < 1 and the plus sign for r > 1). This special eigenvalue and its associated eigenfunctions
should be included in all summations of the eigenfunctions for boundary conditions and
moment coefficients.

The SW solution gives excellent agreement with experiments for Re > 5, 000.

3. Kitchens-Gerber-Sedney (KGS) Solution

The KGS solution employs the full linearized Navier-Stokes equations [Eqs.(52-57)],
but retains the Wedemeyer end-wall boundary layers. This allows the use of the easily
computed SW eigenvalues of Eq.(87). The cylindrical boundary layer is eliminated and
conditions (58-60) E"re satisfied exactly. The boundary conditions on the Zjk's at the outer
wall are:

Z4k(l) = 0 (92)
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Zlk(1) = 1, c =fak (93)

Z 2k(1) = 0 (94)

Note that ck/ak is the same as in both the S and SW solutions. The inner boundary

conditions are:

(a) for a fully-filled cylinder: 2

Z2k(O) = Zk(O) = Z6k( 0 ) = 0

(b) for a partially-filled cylinder:

roZ 3 k(ro) - iZ2 k(ro) = 0

\kZlk(ro)--Zk(ro) = Ak

Z6k(ro) + irOZ(ro) - ( [iZ3k(ro) AkZ 4k(ro)] irof

(c) for a cylinder with a central rod:

Zlk(ro) 1

Z2k(ro) = Zk(o) = 0

The KGS solution is probably better than the SW solution since it depends on fewer
boundary-layer approximations; however, KGS has been limited to applications for which
Re > 1000. An important characteristic of the KGS method is the fact that it can be
modified to give an exact low-Reyrolds-number solution (the HSG solution).

V. High-Viscosity (HSG) Solution

in the low viscosity solutions, the k = 0 solution was selected to satisfy the boundai7
conditions at the flat end-walls. The Ah's were then the eigenvalues of the differential
equations for functions of x. The boundary conditions on the cylindrical wall were then
satisfied by a Fourier series fit of these functions.

The HSG method reverses this process. The k = 0 solution is selected to satisfy the
boundary conditions on the cylindrical surface. The Ak's become the eigenvalues of the
differential equations for functions of r and the end-wall boundary conditions are satisfied
by a least-squares fit t- eigenfunctions of r.

The conditions for the k = 0 perturbation functions are:

(a) in general:

Z10(1) - 1

'For omput~tiowa masonw, contitsns we not specifted at the singular point r = 0 but at some small "iv;tive value ?a. ThM

dariwatiws Z,, Z had can be obtained from Eqa.(53,85,57) to improve the approximations used. Actuafly, Reference 10
useda powe series in r with as many thirty terms to relate conditions at m0 to th*t, at r -to. If ro is taka smadl
enough, om or two terms seem to be sufficient.
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Z 20(1) = Z40(1) = 0

co =

(b) for a fully-filled cylinder:

Z' 0(0) = Z40(0) = Z0(0) = 0

(c) for a partially-filled cylinder:

roZ 3o(ro) - iZ2o(ro) = 0

Zio(ro) - Zso(ro) = 1

iroZio(ro) 2iZ 3o(ro) irof

1 - f Re 2

(d) for a cylinder with a central rod:

Zio(ro) = 1

Z2o(ro) = Z4o(ro) = 0

The conditions for the k 0 0 perturbation functions are:

(a) in general:
Z1k(1) = Z2k(1) = Z4k(1) = 0 (95)

(b) for a fully-filled cylinder:

Z2k(O) = Z4O(O) = Z6k(O) = 0 (96)

(c) for a partially-filled cylinder:

3oZ3,k(ro) - iZ2k(ro) = 0 (97)

AkZ,k(ro) - Zsk(ro) = 0 (98)

Z.,,(ro) + roZ,,(ro) [.Z3,(ro) - AkZ 4 ,(ro)] = 0 (99)

(d) for a cylinder with a central rod:

Z,,(ro) = Z2,,(ro)-" Z4,k(ro) = 0 (100)

For all three inner boundary conditions, the solutions to Eqs.(52-57) must satisfy the
homogeneous boundary conditions; hence these solutions are usually identically zero. We
can, however, select Ak so that other solutions are possible. In particular, we will replace
the conditions Z1 k(1) = 0 by Zsk(1) = 1 and obtain a set of solutions for particular values of
Ak. This can be done by a numerical orthonormalization process available in a very general
and flexible code called SUPORT.(261 This code allows the calculation of Zjk(1) as a function
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of Ak-. The value of Ak that maibes Zjk(1) zero is an eigenvalue whose e.genfunctions satisfy
all the boundary conditions on the inner and outer cylindrical surfaces, r = ro, 1.

The actual determination of the eigenfunctions is a delicate process. A simple Newton
iterative method (strictly speaking, the regula falsi method[27l) has been coded; it will
converge rapidly to an eigenvalue if a good initial guess is available. Hall et al. showed(211
that for a fully-filled cylinder, each eigenvalue falls into one of three families. Figure 1
(from Reference [211) shows 72 of these eigenvalues for Re = 1000, r = 0.1. (Note that
eigenvalue (3,1) is a maverick in this three-family concept.)

For Re = 10 and r = 0, the 72 eigenvalues nearest the origin in the half-plane R{Ak} >
0 were computed by a numerical search process; these 72 eigenvalues are tabulated in Table
2. From th-se ralues, additional sets of eigenvalues were generated by taking small steps
in both Re and r. The resulting eigenvalue data base has been stored on our VAX/8600
computer. For the fully-filled cylinder, this base consists of 6216 files, each file containing
72 eigenvalues for a specified pair of values (Re,r). There are 148 specified Re values:

I to 20 in steps of 1 [ 20 Re values]
30 to 100 in steps of 10 [ 8 Re values]

120 to 2500 in steps of 20 [ 120 Re values]

and 42 r values:

-1 to -. 40 in steps of .10 [ 7 values]
-. 35 to -. 10 in steps of .05 6 6 values]

0 to .10 in steps of .01 C 11 values]
.15 to .45 in steps of .05 O 7 values]
.50 to 1.50 in steps of .10 C 11 values]

yielding the 148 x 42 = 6216 files. By interpolating entries in these files, our program
obtains good estimates of the 72 eigenvalues when 1 < Re < 2500 and -1 < r < 1.5.
These starting values allow computation of the 72 eigenvalues in less than five minutes on
the VAX.

Similar though not as extensive data bases have been established for the partially-
filled cylinder and for the cylinder with a central rod. For both the partially-filled and
central-rod cases, files have been created for 1 < Re < 2500 and 0 < r < 0.14 and for
r0 = 0.1 and 0.3. Three-way interpellation (for Re, r and ro) then yields good eigenvalue
guesses within the specified parameter region.

Once the eigenfunctions are available, they can be used to satisfy the conditions on
the end-walls by a proper selection of the ck's:

N

E ckZlk(r)gk = a Af[1 - Z10(r)] (101)
kt=3
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N CkZk(r)gk = R, = -A]Z-1o(r) (102)
k=1

EckZ4 k(r)hk = R3 -• Z.o(r) (103)
k=1

where

9k = Gk(A)

h k = Hk(A)

As can be seen from Table 2, the imaginary part of Ak can be quite large and the use of
definition (38) for Gk and Hk would cause g9 and hk to have extremely large magnitudes.
Definition (40) avoids this difficulty.

The ck's are selected' to give the least-squares fit of Eqs.(101-103), where the function
to be minimized is

R = fi:l E cZi - R, I2 + ckZ2k - R 2 I2 + ckZ 4,•h, - ?3 Kr dr (104)
0

The quality of the resulting fit is measured by the error e, where

e = (R/Ro)" 2  (105)

and where Ro is the value of R for ck = 0:

Ro = R, I' + I R2 1' + 1 R.3 12}r dr

If e < .05, the fit is reasonably good and we have enough eigenfunctions (that is, the value
assigned to N is adequate).

VI. Equations for Two Immiscible Liquids

If two immiscible liquids are fully spun-up in a cylindrical container at zero coning
angle, they will be separated by a cylindrical interface. At this interface, r = rl, the density
and kinematic viscosity will jump from the inner-liquid values (p2, V2) to the outer-liquid
values (pl, .'i). The density pi = PL, will be used to nondimensionalize the pressure. The
symbol Re will denote the Reynolds number of the outer liquid.

For small-amplitude coning motion, the interface is described by:

= ri[l - R{f!,(z)K*11 (106)

where =il,(ri,,)

(1 - f)r
3

0Other possible selection criteria for the ca,'s we given in Reference 21. In moe case, where the fit is good, the resulting
computed side moment is essentially the sane.
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The pressure relation (28) assumes two forms, one for each side of the interface:
p --P9 [r 2 -- roI1
P- = r2 - r',, _ R{pKA)}, 0 (or rl or r,):5 r < r,

]a2e} 2 [2

= qI l' + r3 -r,- fK} i5r<n 17

where
q = p!/pi

Differential equations (52-57) become

ZIk = -Z 2k/r- AkZ4k (108)

Z~k = -Z2k/r - AkIZ4k - iZ3k (109)

Zs• = 2(q 2,Re + ir- 2)Zlk + i(B + r- 2)(Z2k - Zlk)
-Z3k/r - (iq 2,Re/r)Zs" (110)

4 =zk (111)

Z5k = BZ 4k - Zsk/r - Ak2q 27ReZek (112)

Z6 k= (q2 7Re)- 1[-BZlk 4, (2iq:,rRe - r- 2 )(Zm, - ZIk)

+iZ3k/r - AkIZSk] (113)

where

B = r- +A - i(1- f)q 2,Re

q2r = q2•=V1 /V2 ro r < r1

= 1, r, < r

At the interface, the velocities and stresses are continuous; therefore,

uz(rx,z) u,(rt,z) (114)

UKj,z) = u(r+,z) (115)
UK(rj,X) - j.(r+,:) (116)

q3(Re)-' [Our'•z) iki(ri'z)-iiz(ri'x)]]=(Re)-' [OQ(r') i~s(rt',)-iu(rt'z)l]

(117)

q3(Re)-t' [O x') + .(._, x). (Re)-` [r (r-1 ' ) + o](r+, x) (118)

q, 2(r-, x)+ ir-(r ) c- Re 1U(rT x)] - ,+ )+itu(r+X) al- -2(Re)-1 u(r x)

f- f 8r
(119)

where
q3=

q2 At
the ratio of th. ;nner and outer dynamic viscosities. Thus the pressure perturbation p and
the radial derivatives of i and w have jump discontinuities at the interface.
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VII. Binary Solutions

1. Stewartson Inviscid Binary (SB) Solution

Eqs.(71-S3) still apply, with the additional complication of a jump in the pressure term
at the interface r = r-. If we denote the binary perturbation functions for the pressure
and velocity by ZlkB and Z6kB, Eqs.(115,119) reduce ti,

AZIkB = 0 (120)

AZ6kB = (q - 1) Z6kB(ri,) + ir1Z-kB(rI) +irf 1 (121)
1-f 2j

where
£,( ) = ( )ri,,j ( )r=r-

These binary perturbation functions can be constructed from the single-liquid func-
tions by the following device:

2lkB(r) = Zlk(r) + akZmk(r), r < r,

- Zlk(') + bkZ7.(r), r > r, (122)
Z61ka(r) = Z6k(r) + aZ1Z2k(r), r < ri

= ZS.(r) + bkZ, 2 k(r), r > r, (123)

where the Zr•'s and Zmt's are solutions of Eqs.(71-74) when each subscript 'nk' has been
replaced by '(n+6)k' and the boundary conditions are

(a) in general:

Z7k(rl) = 1

Z7k(1) = 0

(b) for a fully-filled cylinder:
Z12k(O) = 0

(c) for a partially-filled cylinder:

iroZmk(ro)Z,•kr0) I -f
I~krO + 1-f =

(d) for a cylinder with a central rod:

Z7k(ro) = 0

Note that Z12A, has a jump discontinuity at ri. The Z7k and Zi2h functions can be
comruted by two calls to the SUPORT code: for 0 < r <- r, (or r0 < r _ ri) and for
ri < r < 1. The azk's and bk's are determined by Eqs.(120-121):

ak = 4 (124)
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lbk Z,,.k(,") - qIZ•2k(r-) + _( l = (q 1 -1) Z6k(rl) + 1 + if (125)

Equations -imilar to (124-125) were used by Scott(2 81 to obtain eigenfrequencies rk for which
the iInviscid liquid nionient was infinite.

2. Stewartson-Wedemeyer Binary (SWB) Solution

If v-: 6 vi, the SWB method must use an average kinematic viscosity; this average
was chosen to be

v2(r2, - r') + vi(l - r)(126)

-r.
From this, an average Reynolds number, Re., and an average value, 6b,, of 6b can be
determined; the eigenvalues can then be computed from Eq.(87) for this average value. An
approximation for these eigenvalues is

Ai, 4 (127)
2(A - b,)

Next, two additional boundary layers are inserted at the interface to satisfy the continuity
of the tangential stress, Eqs.(65-G6). This, however, requires a discontinuity in the inviscid
radial velocity, since the outflow in the two boundary layers are not equal. Eqs.(120-121)
have new .inip values in terms of the Stewartson pressure jump (AZgsk),S.

AZ =k - (1 - ql)6.F (128)

AZal'D (AZ6,a)s - irlAZIk, (129)
-f

where

F= + e)AZk,_ 2r3 O[rZh)] J i,,} <

C3 = eXp[(r, - 1)/4]
e4 = q2•[1 +q+( -qq)&]-(1 -q,)(1 +S)63

q, = q,/q21/3
Note that Eqs.(128-129) reduce to Eqs.(120-121) for b, = 0. The SWB equations in
this report are based on the assumption that the radial thickness of the inner liquid is
substantially greater than the boundary layer thickness; that is, r, - r0 >> 16. . Reference
7 considers the case where this assumption is invalid.

Finally, the presence of boundary layers on the cylinder wall and on the rod requires
new conditions on Zk(l) and Z-r,(1) for all cases:

( 6,cs \•I,1 O(rZ,&)

Z~k(1) - 6b ) Z'(1) = 1 - (2e 3qs6.1e,8)A (130)
( 1 -6.CSOr

Zlk(1) - 6.C5 Z;'(1) = -(2e q,./c,)AO(rZ'rk) (131)
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where

S= [1 qs -(1- q,)c']/[1 + qs +(1- q•j•cl

i = [1 + q + q,- 3 q) 3 [1 -

and on Z~k(r0) and Z7k(ro) for the rod:

Zlk(ro) + ro& + ) Z'k() = 1 (132)

Z-k(ro) + ro + 6b) Zk(") = 0 (133)

where 6b - 6.q2

Murphy["1 used equations similar to (128) and (129) to compute liquid moments that
showed excellent agreement with experiment.

3. KGS Binary (KGSB) Solution

The KGSB solution uses the simple eigenvalucs of Eq.(127) but requires the LIse of
jump conditions (117-118) in addition to the pressure jump conditions given by Eq.(119)
or (121). The three jump conditions for k = 1,2,...,N are

Z3kB(r-) - Z 3ka(rf) = ) -Z3ha ( 34)

ZskB(r+) - ZskB(r-) = AZsJa ,35)
Z6kB(rt)-ZskB(r) Z,136)

where

,%Z3kB = (q3 - 1)[Z3k13(r-) - 1Z2kB(rI)/r1]
,zsjB = (q3 - 1)[ZSkB(r?) - AkZ,kB(ri) + Ak]

and where AZ 6 kB is defined in Eq.(121).

In order to satisfy conditions (134-136), we need to introduce three sets of six auxiliary
functions, defined in Table 3. These functions are continuous in the velocity components.
Substitution in Ecjs.(134-136) yields the values of dk, e,, and fk. The resulting values of
(ZB),=1...6 can then be used to compute the liquid moment exerted by a binary liquid
payload.

4. HSG Binary (HSGB) Solution

In the KGS13 solution, tbo, li0, U0, and flo were zero and the auxiliary functions of
Table 3 were used for positive k. For HSGB, the binary A0 eigenfunctions must also be
computed by use of the auxiliary functions given in Table 3. The jump conditions for the
Ao eigenfunctions are

AZwo = (q:3 - 1)[Z 3oH(r') -iZ 2os(rj)/rt] (137)
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AZSoB = (q3 - 1)[ZSos(r-) - ZIoB(r,) + 1] (138)
[7 ir, ZIo_(_ ) _ 2(q3 - 1)ZIOB(rl) (139)

AZ6 0B = (ql -1) [zeoa(ri) + i -7f + - Re

The jump conditions for the other eigenfunctions (k = 1,2,..., N) are

AZ3kB = (q3 - 1)[Z 3 kB(rj)- IZ 2 kB(rl)/rl] (140)
Az~k = (q3 - 1)[Z~kB(ri) -- AiXZi(r,)] (141)r ir1 Z~Ik ri)1 2(q3 - 1)Z~kB(r1)
AZSkB = (q, - 1) ZekB(r-) + I1-f - 2R (142)

These jump conditions are used to determine the necessary dk's, ek's and fk's. The
resulting binary eigenfunctions are then used to satisfy the end-wall boundary conditions
of Eqs.(101-103); that is,

N
N ckZl,(r)gk = A1 A_[1 - ZIoa(r)] (143)

k=l

NE CkZ2kB(r)gk = R2  -AJ Z2o8(r) (144)
k= I

xckZ4kB(r)hk = R3 -a -Z 4 oa(r) (145)
k=1

The ck's are then selected to fit Eqs.(143-145) so that R is minimized, where

R= j ,.lckZlk - R, I' + I ,CkZ2k, R-4 12 + I_, k iZ4&kh -1R3 12}r dr (146)

and where

q = qi (<ri)

-1I (r> rl)

The error of the fit is comptted by Eq.(105) with

S ql0,fI R, + I R2 12 + I 113 12?r dr

VIII. Liquid Moment

If a projectile is performing simple coning motion, the momeit exerted on it by a fully
spun-up liquid payload can be defined in terms of three dimensionless moment coefficients.
These coefficients are related to the liquid moment (Mf,,, Ml, MA) in the coning coordinate
system as follows:

M,: = mLa 2 ý 2 rCLnMuK (147)
A,,, + iAm = mLa' 2ý 2?fCLSA, + iCIAIIK (148)
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where
mL = 27ra2 CpL

These three coefficients - the liquid roll moment coefficient CLRAI, the liquid side moment
coefficient CLSM, and the liquid in-plane moment coefficient CLGM - are all functions of A,
r, e, Re and K 2 . The liquid side moment affects the damping of the coning motion while
the liquid in-plane moment can cause a frequency shift. Thus our primary interest is in the
liquid side moment coefficient CLSM since it determines any instabilities that could occur.

The linear pressure at any point of the cylinder can be expressed in the coning coor-
dinates by combining Eqs.(10,11,107):

p - PO- R{(p +if)K'] 0 (or Ff or f,) < F < FjPLa2ý2 I I "I

q, + F- - R{l(Q+HF)K'}, Fj <F <1 (149)

The linear coefficient of K° is defined as the pressure coefficient Cp and can be expressed
in terms of Z6 k(r) by use of Eqs.(36,51):

N

Cp = ql,f [(2 - f)xr + E c Z 6k(r)Gk(x)] (150)
k=O

Note that the distinction between x, r and 1, F vanishes in the linear terms.

The linear coefficients can be computed from the fluid mechanics theory of this report
by integrating the pressures and viscous stresses over the lateral cylindrical wall and the
two flat end-walls. If a central rod is present, its pressure and viscous contributions must
also be included. Using subscripts p for pressure. v for viscous, e for lateral wall, e for end
wall and r for rod, we havel4' 121

CLSM, + iCLIM = Cmp, + C,,. + Cmp, + Cmw1 + C.. + C,. (151)

Expressions for the components in Eq.(151) are given in Table 4 for HSG and HSGB. The
table also applies to the S and SB theories when the Reynolds number is infinite, but
additional terms must be introduced for the boundary layer theories (SW, SWB, IGS,
NGSB), as indicated in Table 5.

The linear fluid momenta can also be computed directly by differentiating the volume
integral of the angular momentum of all the liquid in the cylinder. To do this, we first
express the position and velocity vectors in earth-fixed cylindrical coordinates (i,, ill ef):

R = (4, + r,)a (152)

V = V.•, + V,, + Vo, (153)
i, = ,cos 9 +4,sin9

= (-Ki,, + -ýiy)cos , + i4sint (154)

"---•(Kire - 7i.)sin¢ + i., cos 0 (155)

"4 2
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Then
R x V= [rVei. - xzVe + (xV. - rV3)•] (156)

The angular momentum is

a 3 31 1  A 2 R tFdi; di dý
= L1 4. + L 2 iw + L 3 4• (157)

where expressions for the Lj are given in Table 6.

The moment exerted by the liquid on the projectile is the negative of the derivative
of the liquid's angular momentum:

M--L

-(L,,= + L2;w + Li,. + x (158)

For steady-state constant-amplitude liquid motion,

4 = e=0 (159)

M = ,oi ~x L
= r[-KL3 =. + L 3g, + (KLI -YL,)4.] (160)

Eq.(160) - applied to definitions (147-148) - yields the very important result that

7CLpW - -CLSM (161)

This result has been obtained elsewhere[9,-18, but the above is the simplest, most direct
derivation and is based solely on the asumption of steady-state, constant-amplitude mo-
tion given by Eq.(159).

The first terms in an expansion in K of the Li's, obtained by use of Eqs.(16-18), are
given in Table 6. Substituting these small-K expressions for the Li's in Eq.(158), we obtain

CLPJI 4 -R{S} (162)
CLSM + iCLIM = (1 - ie)(O + 2i01) (163)

Since CLPj is a quadratic coefficient, it can't generally be computed from a linear theory.
Eq.(162) neglects the nonlinear part of L1. For L, = 0, Eq.(162) gives the correct quadratic
coefficient.

It is easy to show that S vanishes for f = 0. Therefore, for r - e = 0,

CLM = C." = 0 (164)
Cim = 2.B (165)

Values of CLya + iCLiM obtained by this angular momentum approach will be denoted as
C,... The appropriate formulas are given in Table 7; the derivation of these formulas is
given in Appendix B.
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IX. Numerical Results

1. Surface Integral versus Volume Integral

In the HSG, KGS and SW theories, the liquid moments were originally computed
by integrating the pressure and wall shears over the walls of the container (see Tables 4
and 5). The volume integral method (Table 7) should give the same results if the velocity
perturbation functions satisfy the linearized Navier-Stokes equations and the boundary
conditions. For a sufficient number of eigenfunctions, this is the case for the HSG theory:
the two values of CLSM are equal. In Figure 2, CLSM values obtained from HSC by both
the surface and volume integral methods are plotted versus the number of eigenvalues used,
for Re = 500, A = 3.1 and r = 0.1. For 28 eigenvalues or more, the values from the two
methods are essentially equal. For a smaller number of eigenvalues, the two values differ,
but the volume integral result is always closer to their common value for more than 28
eigenvalues. This figure also shows the error of the fit to the end-wall boundary condition;
we see that the CLSM are the same when the error is less than 0.10.

Gans['] uses the volume integral method in his version of SW and he notes that this
method correctly predicts that the side moment coefficient goes to zero as r goes to zero,
whereas SW results based on the surface integral method do not have this property. Both
Rosenblat["11 in his finite element calculations and Herbert["1 ] in his spectral method use
the volume integral approach. Herbert emphasizes the value of the volume integral in
giving better results for the approximate theories. Indeed, for the approximate boundary
layer theories at low Reynolds numbers, the average error in velocity predictions should
be much less than the error in the velocity gradients at the boundary.

In Figure 3, the volume and surface integral results for KGS and SW are compared at
Re = 500, A = 3 and r ranging from 0 to 0.20. The exact HSG values are also given in the
figure. The surface integral results are essentially worthless, but the volume integral results
are quite good, with KGS somewhat better than SW. For this reason, we will routinely
use the volume integral to compute the liquid moments for all theories.

2. Fully Filled Cylinders

Historically, our interest in the moment produced by highly viscous liquids is based on
experiments by Miles Miller[311. He measured the liquid roll moment in a coning, spinning,
liquid-filled cylinder and showed that at a Reynolds number of about 150, the liquid roll
moment was large enough to cause flight instabilities[3ll. The theoretical basis for this
very impoitant result is Eq.(161), which directly relates the liquid roll moment of Miller's
experiments to the liquid side moment that controls flight instabilities.

In Figure 4, we plot the negative of Miller's02-3 1CLP. versus logPoRe for a fully
filled cylinder of fineness ratio 4.5 and r = 0.1. This figure also gives the HSG, KGS and
SW curves for CLSM. For HSG and KGS, we see good qualitative agreement but poor
quantitative agree.nent with the Miller data for Re less than about 20.

The most striking feature revealed by Figure 4 is the exceptional ability of the KGS
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theory to predict the much more soundly based HSG curve. The three theories are com-
pared for two other fineness ratios, 3 and 1.5, in Figures 5 and 6, respectively, and we
see that the excellent agreement for the KGS theory persists for all Reynolds numbers
greater than unity. The SW theory, however, does surprisingly well down to an Re of
100. Previous comparisons showed poor agreement for Re less than 1000. The primary
difference between the earlier computations and those of Figures 4-6 is that Figures 4-6
were obtained by (a) using the volume integral method, (b) adding the special eigenvalue
(see page 10), and (c) imposing a more exact boundary condition, Eq.(C19).

The SW method results in a very fast ccmputer code since it is based on linear
combinations of easily generated Bessel functions. Indeed, three-dimensional surfaces of
CLSM as functions of any two of the parameters (r, e, Re, A, ro) can be obtained quickly in
the interactive mode on our VAX 8600.

The KGS method solves a sixth-order complex differential equation numerically for
a set of eigenvalues. These eigenvalues are quite easy to compute; usually, less than
twelve are required to satisfy the boundary conditions adequately. For Re less than 1000,
a single calculation of CLSM takes less than 15 seconds on our VAX, but the run time
increases with Reynolds number. The very exact F.SG method unfortunately requires
many more eigenvalues (our code has an arbitrary, but easily extendable, limit of 72).
These eigenvalues are computed from tables of starting estimates and an iterative Newton
scheme.

The agreement between the theories as demonstrated by Figures 4-6 has a very im-
portant pay-off. For Reynolds numbers greater than 300, the improved SW method of this
report can be used to compute CLsM in a very fast interactive code. For Re between 0
and 300, HSG results can be reasonably well approximated by the KGS code, a process
somewhat slower than the SW program but still fully interactive.

This ability to obtain CLSM rapidly over a wide spectrum of Re values is demonstrated
by Figure 7, a three-dimensional plot of CLSM. versus Re and r, for a fully filled cylinder
of fineness ratio 4.5. The plot was obtained from the KGS and SW codes. For the higher
Reynolds numbers, we see the characteristic resonance peak at about r = 0.20. For a fixed
r, a mild peak appears near Re = 50. Similar 3D figures were first made by Miller[321.

An important feature of Figure 3 that has not yet been addressed is the linearity of
CLSM with r for r less than 0.2. According to Eq.(148), a linear CLsM implies a side
moment that varies as the square of the coning frequency and is independent of the spin
rate.

The region of linearity in r can be characterized by the slopes ks and kR, where

CLsM = ksr, CLaM = kRr
and by r,,, the maximum value of r for which linearity is valid. We will define iý, to be
the lowest positive r value for which CLsM/lr falls outside the interval O.Oks to 1.1ks. In
Figures 8 and 9, we plot ks and r,, respectively, versus Re for Re between 0 and 1000.
As can be seen from Figure 9, for Re < 250 the side moment coefficient is linear with r
for a substantial r range (viz., r < 0.2). This is precisely the experimental observation by
Miller(31i for the liquid roll moment.
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3. Partially Filled Cylinders and Central Rods

Stewartson's original inviscid work[N and Wedemeyer's viscous extension[21 covered
both fully and partially filled cylinders. FrasierN1 extended the SW theory to a cylindrical
cavity with a central rod. Both the KGS and HSG theories[10 -13,211 were originally restricted
to fully filled cylindrical cavities. With the help of the very ý,nt-ral SUPORT subroutine[26],
it is quite easy to extend the KGS theory to partially filled ,avities and central rods; this
has been done for this report. As mentioned earlier, the extension of the HSG theory to
these cases requires the forming of additional files of eigenvalues. These eigenvalues have
been obtained, using BRL's CRAY supercomputers.

For Figure 10, the side moment coefficient has been computed hy all three theories for
a partially filled cylinder of fineness ratio 3, with a Reynolds number of 500 and r = 0.10,
and plotted against the inner cylindrical free surface ratio b/a. As we would expect, the
side moment vanishes when this ratio is 1.0 and the cavity is empty. The generation of
HSG eigenfunctions gets to be too tedious for b/a > 0.9, but we see that the KGS theory
is a good approximation to the more exact HSG theory in the range 0 < b/a < 0.9.

Figure 11 is a similar plot for the central rod ratio d/a varying from 0 to 1. The HSG
eigenfunctions were only calculated for d/a up to 0.5. Once again, the computationally
simpler KGS theory is a good approximation to the HSG theory. Thus for most engineering
calculations, the KGS theory would be the one to use.

4. Binary Liquids

The SW theory was extended to binary liquids (SWB) in Reference 7. The extension
of the KGS and HSG theories to their binary versions, KGSB and HSGB, has been done
as part of this report. The eigenfunctions and boundary conditions for the KGSB theory
are essentially the same as those for the KGS theory; hence the eigenfunctions have no
difficulty fitting the lateral wall condition, Eq.(59). The HSG end-wall boundary condition,
Eq.(104), can be reasonably well satisfied by ten HSG eigenfunctions at Re = 10 and by
less than 72 HSG eigenfunctions for Re less than 2000. Unfortunately, this is not the case
for the HSGB boundary condition of Eq.(146) and the HSGB eigenfinctions. Even for
quite low Reynolds numbers, a large number of eigenfunctions is required. For this reason,
we have stopped (at least temporarily) running our HSGB program.

The great success of the KGS theory, however, allows us to place primary reliance
on the KGSB theory to calculate the effect of binary liquids of different densities and/or
viscosities on the liquid side moment. For high Reynolds number, good experimental agree-
ment has been obtained(41 ; the validity of the KGSB theory at lower Reynolds numbers
will depend on future experiments.

In Figure 12, CLSM is plotted against r for a cylindrical cavity containing approxi-
mately equal amounts of liquid (r' = 0.49), the densities of the two liquids differing by 60%
(pj2 = 0. 4p,) while the kinematic viscosities are equal. The two curves are for two kinematic
viscosity values, corresponding to Reynolds numbers of 300 and 500. The interface is at
ri = 0.7, the fineness ratio is 3.
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In Figure 13, we restrict ourselves to Re = 500, A = 3, and r = 0.15, but vary the
density ratio q, from 0 to 1. The two curves are for r, = 0.5 and r, = 0.7. The HSG value
for one liquid (qi = 1) is plotted and we see that the agreement is quite good. (It is a wise
practice to confirm KGSB calculations, where possible, with an HSG check point.)

Finally, in Figure 14 we consider a case where the inner liquid is very viscous and
comprises 98% of the cylinder volume (r, = 0.99). The small amount of outer liquid has
the same density but quite different viscosity. (In any experiment, the density of the outer
liquid would have to be slightly greater than that of the principal liquid so that the outer
liquid would be located near the cylindrical wall.) According to Figure 4, for A = 4.5
and r = 0.1, the maximum side moment coefficient occurs at an Re of approximately 50.
Hence in Figure 14, we set A = 4.5, r = 0.1 and Re(inner liquid) = 50 and we vary q2 from
0.1 to 100. Note that the side moment coefficient essentially vanishes when the Reynolds
number of the outer liquid is 5000. This qualitative behavior has been observed by Miller.
It is interesting to note that for the second curve (A = 3), the side moment is relatively
insensitive to q2.

X. Su~mmary

1. The four liquid payload theories - S, SW, KGS and HSG - have been developed
here in a single theoretical framework.

2. A very simple and elegant derivation of the relation between liquid side moment
and liquid roll moment is given.

3. Moment coefficients have been computed by both surface integral and volume
integral and the clear superiority of the volume integral is demonstrated.

4. Eigenvalue tables for a wide range of r's and Reynolds numbers have been generated
to allow quicker HSG calculation of the side moment coefficient. These tables originally
applied only to a fully filled cylindrical cavity but they have been expanded to include
partially filled cylinders and cylinders with a central rod.

5. Side moment coefficients computed from the more convenient KGS theory are
shown to be good approximations to those obtained by the more exact HSG theory. This
agreement is shown to exist not only for fully filled cylinders but for partially filled cylinders
and cylinders with a central rod as well.

6. Although the binary version of HSG often ftals to satisfy the end-wall boundary
condition, the binary version of KGS does not have this difficulty and gives good agreement
with experiments at high Reynolds numbers.

7. KGSB, the binary version of KGS, was used to determine the effect of a small
amount of lower viscosity liquid on the side moment. The theory predicts the large decrease
in side moment that has been observed experimentally.
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Table 1. The Stewartson Zjk's as Bessel Functions

ZIk = ""'J [EkJo + F,1'0 + '( [Ek J1 + Fk YI

z 2 k = -'[" J' ± FklJ] + (+ -r"[EkJI + FkYlI

zU = -- h-,E Jo + Fk•Y] + [2 2 k,] [EJ, +(3-f)rt k (3--/)r2 (1_1)2

Z4, = I"'[EkJI + FkY,]

Zsk = '-J7 [EkJo + FkYO] - 'A' .[EkJI + FkYi]

Zsk = EkJI + FkYl

where

fb= (3 - f)(1 + f)/(1 - f)

J. =J,,(fbAkr)

= Bessel function of the first kind of order n

Y= Y.(fbAkr)

= Bessel function of the second kind of order n

and where the Ek's and Fk's are determined by the boundary conditions.
The condition ZIk(1) = 1, for example, requires that

[(1 - f)fbAkJo. + (1 + f)J,.]Ek + [(1 - f)fbAkY0. + (1 + f)1'l.]Fk = -i(3 - f)(1 + f)

where the subscript 'a' on a Bessel function denotes the value at r = 1.
For the fully-filled case, the condition Zc,(O) = 0 requires that Fk = 0.
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Table 2. Eigenvalues for a fully-filled cylinder, Re = 10, r = 0.

jI-Familyl- -Family2- -Family3-
.904, 4.290 1.962, -3.697 1.309, 1.518

2 .573, 7.528 1.925, -6.702 2.837, 6.690
3 .415, 10.796 1.983, -9.791 2.567, 9.787
4 .326, 14.052 2.054, -12.891 2.484, 12.895
5 .269, 17.289 2.124, -15.997 2.463, 16.005
6 .229, 20.510 2.188, -19.109 2.468, 19.117
7 .200, 23.718 2.247, -22.225 2.485, 22.233
8 .177, 26.915 2.301, -25.346 2.508, 25.353
9 .159, 30.103 2.349, -23.470 2.533, 28.477

10 .144, 33.283 2.393, -31.598 2.558, 31.603
11 .132, 36.458 2.433, -34.727 2.583, 34.732
12 .121, 39.628 2.469, -37.859 2.606, 37.863
13 .112, 42.793 2.501, -40.992 2.628, 40.996
14 .104, 45.955 2.529, -44.127 2.648, 44.130
15 .006, 49.114 2.554, -47.263 2.665, 47.266
16 .090, 52.270 2.575, -50.401 2.680, 50.403
17 .084, 55.424 2.593, -53.539 2.693, 53.541
18 .078, 58.576 2.608, -56.679 2.703, 56.680
19 .073, 61.725 2.619, -59.820 2.710, 59.821
20 .069, 64.872 j 2.627, -62.962 2.714, 62.962
21 .064, 68.017 2.631, -66.105 2.715, 66.105
22 .060, 71.160 2.630, -69.250 2.712, 69.249
23 .055, 74.300 2.626, -72.306 2.705, 72.394
24 .051, 77.437 2.616, -75.544 2.694, 75.542
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Table 3. Auxiliary Functions for the KGSB and HSGB Solutions

ZlkB(r) = ZIk + dkZTk + ekZ13k + fkZl9k

Z2kB(r) = Z2k + dkZek + ekZl4k + fkZ2o0k
Z3kB(r) = Z3k + dkZgk + ekZlSk + fAZ 21 k
Z4kB(r) = Z4k + dkZlok + ekZl6k + fkZ22k
ZSkB(r) = Zsk + dkZIlk + ekZlk + fkZ23k
Z6kB(r) = Z6k + dkZ12k + ekZlgk + fkZ 24k

The three sets (Zjk)j-7...12, (Zjk)j,-13...18, (Zj,)I-l.g...24
satisfy the homogeneous form of the boundary conditions
satisfied by the set (Zjk)j, ...e. At the interface:

for j = 7 13 19
Zj,(r,) = 1 0 0

Zj+l)k(ri) = 0 1 0
Z0+3)k(ri) = 0 0 1
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Table 4. Liquid Moment Coefficients

C0= i(l - ie) I{[f - 2- cDZeo(l)]A2/3 - (1/2A) E ckDkZejr(1)}

Cm,, = i(1 - ze) [(2 - f)B1 + co ,f,. q17Zso(r)r~dr + (1/A) E ckgk f.4, q1,.Zej,(r)r~dr]

Cm,,,. = -iqlro(l - ie) {[(f - 2)ro - coZeo(ro)]A 2/3 - (1/2A)E CkDkZ6Ak(ro)}

C"w= '-"' {cofiZso(I) - (A 2 /3)Z~o(1)] + Eck [ igkzsk(1) _Da.Zmj(I)j}

C'e= i(1,ýt {-2jB 2 + co f, q:,,[2Z~o(r) - Z2o(r)]r dr + E ckAhk f,. q3,.f2Zlk(r) - Z2k(r)]r dr}

=v Re {co[iroZso(ro) - (A 2 /3)Z 3 o(ro)1 + E Ck [2A&~&o &Z~o]

where all summations are for k = 1 to N and where

B, = [1 - (1 - q1)r" - qIrfl/4

B2 = [I - (1 - q3)r~ - q3r ]2

CO = f for HSG or HSC13

= 0 otherwise

Dk= fjA xGi,(x)dx

q = q, (r < ri)

-I (r > rj)

=, q3 =1 for a single liquidJ
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Table 5. Boundary Layer Modifications to the Liquid Moment Coefficients

For SW, SWB, KGS and KGSD:

CRe, f {(1 - 3.4Y21 + k~ CkAh -
3 g,() 4q3r[2Zlk(r) -Z 2k(r)]r dr}

For SW and SWB:

In Cmj, replace Zek(1) by Zj6 -(1) - 21b,,e2Fj(1)

In Cm,,;,, replace Zsk(ro) by Zrk(ro) + 2i6be2 F1 (ro)

In C~,,d, replace ZsAk(l) by Z~k(l) - Y-e2Z 4 k(1)
and replace Z,3k(l) by Z3k(1) - i6;-'e 2 Fi(1)

In Cm,,,, replace ZSk(ro) by ZSk(ro) + 66'10%Z4 k(ro)

P.ndi replace Z3/h(ro) by ':jA(rO) + z6b'e 2F1 (ro)

where ý3 (1 +i)~ (+ f)Re,./2
Fa(r) =Z2k(r) -ZIM(r) + r
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Table 6. Components of the Liquid Angular Momentum

L = , + L~y + L~.

where

Lj a' f0 f-A fLj p(f)NAF do di df

and where

= P2, 1(•, < f < <,(i , )

= P2, <F<f1= PI, f,(i, )< F _< I

N1 = 7rVe + K[(xV,. - rV.) sin;O + xVo cos4']

N2 = KrV9 -7[(xV,. - rV,) sin t + xVe cosi k]

N 3 = (xV, - rV,) cosk -xVs sint.

For small K,

L, = 2mLa 2q.81

L2 = mta 2 ýKR~i{S}

L3 = rnLa 2 'KR{S}

where

S---I + (1 - q1)fF 2(rj) + qq 4f fF2 (ro)

I = -(1/2A) f A j, qli[F(iF - w.) + 1(u + iiz + 2ii]F didI

fF 2 (r) = ,(,-f)A-A(I(r,i) + i(I -f)•l•i •

q4 = 1 for partial fill; zero otherwise
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Table 7. Liquid Moment Coefficients Computed from the Angular Momentum

For HSG, HSGB, S and SB:

C,, = (1 - ie){2i 1D + f [F3 + (1 - qj)f F2(ri) + qI(f + q4 - 1)F 2(ro)]}

For KGS and KGSB, add:

(ACmm), = -(1 - if)f {[(Aý3 - 1)/032]F4 -(1 - f)F2(1) - (1 - ql)F 2(r1 ) - qjq4 F2 (ro)}

For SW, add (AC,,m), plus

(~Crm)2  -(1- i)f6GEFs(1)C2

For a central rod, using SW, add (~m~,(AC,,,), and

('Ž~mm)3 -(1 - ie)fbbEFs(ro)e2

All summations are for k = 1 to N and

113 ~ ~ ~ = 1-( 1r/2

£2r f 1 -oor

20() -f)~y ((2A2/3) [i-c~or]-(1/A) E ckDjZlk(r)}

F2(r) [2 - 1/A) Zckgk[2Z~k(r) - Zj~)]- -- ckgk2k~r)f

F3 =-i'(Bj + 2B 3A 2 /3) - CIOr + F, ckh(hk - 2gk/A,\k)

F4 = 2fB,3 -(I /A) Fc,gki

Fs(r) = r f{jA2/3 + (1/2A) E ck{Dk[Z 2h(r) - Zlk(r)1 - 2rqkZ 4 k(r)/A\k}}

r. = f', q,,Z 4k.(r)r' dr

ik =f,. q1 [2Z~k(r) - Z21,(r)1r dr

or = -, OV(-3 -f)/(1 +f)

q 1/2
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Table 8. Liquid Moment Coeffcient Differences for Partial Fill and L 7 0

AC,mp/L 2 = -i(1 - ie)[f - Z.L(l) + (1/A) rA;'tctAZ(1)

xC,.wIL2 = (1 - ie)(Re)-'lfZ (1) - (I/A) rA;1 cAZu(1)

ACj,1v/L2 = iro(1 - ie)fVro - Z6L(ro) + (l/A)2 1\'CLkZ.hM(ro)

AC.V'PIL2 = -ro(1 - ie)(Re)'t[Zat.(ro) - (1/A) A;'crgAZ(ro)

where all summations are for k = 1 to N
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Appendix A: Effect of Center-of-Mass Axial Offset

If the projectile's center of mass is not at the center of the cylinder, the liquid moment
should be computed relative to the projectile's center of mass. Since the projectile's coning

motion is relative to its center of mass, the boundary conditions on the liquid are also
changed. In this appendix, we will consider both of these effects.

We will locate the projectile's center of mass relative to the center of the cylinder by
the dimensionless distance L = h/a. This distance will be negative if the projectile center
of mass is to the rear of the cylinder center. Eqs.(10-12) become

z - L = 1 - L + FR{Ke-4} (Al)

r = - (i-L)R{Ke-'ý} (A2)

- = -(iFL) R{iKe-'&} (A3)

The new boundary conditions become:

(a) on the cylindrical wall (F = 1):

0(1,X) = i(1-f) (A4)

(lx) = -( -- f)(x - L) (A5)
iv(l,x) = -(I-f)(x-L) (A6)

(b) on the end-walls (i ± A):

,(r,-,A) = i(l - f)r (A7)

Ui(r, !A) = i(1 - f)(FA - L) (AS)
,L(,±a) = (1 - f)(Ta - L) (A9)

if we add a subscript 'c' to v ~ur,,r :nd C,T to denote those variables for L = 0, then
more general variables -an be defiz :4 by the relations:

w= W,+Lf t Z 4L(r)+ cLiZ4  k(r)G'x)] (A10)

klM1IL = u -. L [i(1 - I) + IZtL(r) +1 f (LhuZt(r)Hk(€)j (All1)

[ ]
U - = U- - ii + Lf Z2,L(r) + k c,.Z2,(r)Hb(.) (A12)

1! = p + L (1 - f')r + fZE.L(r) + f cLkZ.&(r)H*(x)] (A 13)

C, = C,. + Lf f-/r + ZE.L(r) + F c.kZo,(r)H* (z) (AN4)
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The terms involving ZjL must satisfy the linear Navier-Stokes equations. This means that

they are solutions of Eqs.(52-57) when index k is replaced by the symbol L in each subscript

and when

AL=0, ALl=1, AL2=0 (A15)

It can easily be seen that the other terms multiplied by L and outside the summation are

also solutions of Eqs.(52-57) with k replaced by L.

We now require that ti. ! terms multiplied by L satisfy the boundary conditions mul-
tiplied by L. For F = 1,

ZIL(1) = Z2L(1) = Z4 L(1) = 0 (A16)

For the interior boundary condition-:

(a) for a fully-filled cylinder:

Z6L(O) = Z 2L(O) = Z 4L(O) = 0 (A17)

(b) for a partially-fi'led cylinder:

iroZlL(ro) 2Z'L(ro)Z Ldr0) + IL = f,' (.418)
1 - f Re

ZSL(ro) = 0 (AID)

roZ3L(ro) - IZ2L(ro) = 0 (A20)

(c) for a cylinder with a central rod:

Z,L(ro) = Z2L(ro) = Z4L(ro) = 0 (.421)

Note that Eqs.(55-56) contain only Z4L and ZsL. Since the boundary conditions for
these variables are homogeneous,

Z4L(r) =- ZSL(r) =- 0 (.422)

On the" end-walls:
'V

E C.kZ4 k(r) = 0 (.423)

ZIL(r) + FctLkhkZI&(r) = 0 (.424)
kul

,V

Za1,(r) + FcI.kh1kZ 2*k(r) = 0 (.125)
k-I

For the fully filled and central rod ca."., all the boundary conditions are homogeneotis
atIh~l tl.erei:a Ee

ZL.tr) =0 (.4_)

-A4



For these cases, Eqs.(A23-A25) can be satisfied by

CLk = 0 (A27)

and only the pressure components of the liquid moment are affected. If moments are
computed with respect to the actual center of mass, the entries for CPj and C,p, in Table
4 must be modified by the following increments:

AC,,,mp = -i(1 - ie)fL2  (A28)
A~Cp,• = it2(1 - ie)fL2  (A29)

For the partially-filled case, however, the presence of the free surface makes the situa-
tion much more complicated. Four of the entries in Table 4 must be modified; the required
increments are given in Table 8.
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Appendix B: Linear Moment from Angular Momentum

If we apply Eqs.(10-12,19-21) to the definitions of the Ni's (Table 6), we obtain the
following linear expansions:

IVI = aý[f2 + Kg1] (111)
N2 = -aý [Ficos + (K/2)Rji*J+ 921] (112)

N3 = -aý [Fisiniý+ (K/2)R{& +31 (B3)
where

9V i -)+2m --- j••¢
f gidi = 0

Since

p(i) = 0, 0<F<F1(i,¢)
=~ i, •(1, ) < F < Pi,(1,)
SP1, TX,(,)<F<1

we can write
P oJ1 I-- J1 pNjF di dz dF = Mi, + qA1 2i + q1Msj + Mq (B4)

where

M2j, M3j, M4j =f •VdVd .
IA J. 3%4 JF idýd

(rA, rB) = (Vif, Fo) fm'M2i

= (VI, F,) for Mvi
- (•i,, I) for Mo,

For a central rod, if - fo and M 2, = 0. Linear expansions of the M,,'s yield

l = 2Mr 2tB•B (BS)
L2 - mra'ýKR{iS) (B6)

Ls mt• 2ýKR{S} (B7)
where

S = r + (1 - ql)fF2(r,) + qlq 4fF 2(ro)

S -(1/2A) Ljq ,ý _ 4 4ddidF

1F2(r) = r2 I (i(r, ) + i( - f)iji d12(1 - f )A J-A
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and where q4 = 1 for the partially filled case and zero otherwise.

Note from the definition of Ný that the .M;, 's involve the volume integral V, of F:(iF-w)
and the volume integral V of i(.u+ it,+ 211). We now derive a relation between Vj and V2
in order to eliminate V2. The continuity equation for the perturbation velocity functions
is30111l:-

C = t: +rI--O = 0 (B8)

If we integrate by parts the volume integral of qi:,.C. we obtain

IA [i2 i'+ [q, :21,1 i jdi + jI 'q l7 [;,,,IAi;2 diF

- -L [( , + ir)1 + ,,,:m , di d,: = 0 (B9)

Adding ii and iF terms as needed to obtain the desired expressions, we have

LI[q2 k+(+ + ql)]7
' }1 di + f q,,r[i(_- Fl did

I ql,[(u + it + 2ii)! + (u i -•)F: di dF = 0 (B10)

which reduces to the desired relation:

(1/2A) ,'A qi,(u + it + 2i.i).-i di d: = (1/2.4) ]] ql,(iF -t,)F2 di di
0 _A0"

+(I - f)f [q, F 2 (ro) + (1 - q,)F 2 (r,) - F2 (1)]

+ifB 2(2A 2/3) - if B, - fG (Bl1)

where

F(r) = (-f) {(2Af/3) [-,ioZ.o(r)] - (/A)ZckD*Z.,(r)}

fG = j qji(1 - f),: - I(,:, A)i,:2 d,"

According to the boinndary conditions, F2(1) and G are zero. This, of course, may not be
the case for a finite number of eigenfunctions or for boundary layer solutions based on an
approximate form of the continuity equation. However, F 2(1) = 0 is a valid assumption
for HSG and HSGB. The actual nonzero value of F1(1) will be computed for the boundary
layer theories. G will be computed exactly in all the theories.

E,.(1B I) can now be used to derive the formnlas, in Table 7.



Appendix C: End-Wall Boundary Layer Relations

The usual boundary layer assumptions can be made fbr the linearized Navier-Stokes

equations [Eqs.(29-32)] in the vicinity of the end walls (r ±A). The subscript "be" will

denote end-wall boundary layer functions.

O 0 (C2)
S-Re O2

1 02(c

i(f - 1)b.• + 21. = R 2(C3)

S= 0 (C4)
ax

If the longitudinal symmetry of the boundary conditions is used, the solutions U and V.•
to these equatioas take simple forms closely related to those given in References [4] and
[12].

I.= (if/2)[-A(r)G.(x) + B(r)G&(x)j (C5)

= (f/2)[A(r)G.(x) + B(r)GC(x)] (C6)

where

Ge = sin(iax)/sin(iaA)
Gb = sin(i13x)/sin(1i3A)

a= (1-i)[(3-f)Re/2J]/2

13 (1+i)[((+f)Re/21/
2

The functions A(r) and B(r) are determined by the no-slip conditions at z = A. If we
denote the left sides of Eqs.(33-36) by tb, i, 6, 0, we can write

z(r,A) = (0, + 1UU).,,A =-i(1 - f)A (C7)
v(r,=A) (6+Vk),.A"-(1-f)A (C8)

Thus

fA(r) = -(0 + ii),..A = -if cE kZ2k(r) (C9)

fB(r) = -(' - tt& - 2(1 - f)•In.,A

= -if(2jA- Fc4[2Zjk(r)- Z2h(r)j) (C1O)

The continuity equation can now be used to obtain a relation for uUL:
-1 r(1 + f)G.(z) + (3-f)C,(z)I Ou(r,A)

20 - f) a 13 8: (CU)

The boundary condition for the velocity normal to the end walls is

uI(r, *A) = (,i, + "j)..*A = i(1 - f)r (C12)



or

ckZ,4k(r)[cos(.' &A) + Akb,,sin(A.A)] = 0 (C13)

where

__1_ 1+f +3-f

2(1f -) I +

--(1-f+0 1[V fW7 i'2T'f4=2(1 - 777212-•

Thus Ak must be selected so that

cos(A&A) + Akb, sin(AA) = 0 (C14)

The boundary condition for the normal velocity at the lateral wall is affected by the

presence of the boundary layers at the end walls.

(1,z) = ý4(1, Z) + u(1,X) = -I'(, - f~ (C15)

This reduces to

ZckZik(I)G(z) + (1/2)[-A(1)G.(x) + B(1)Ge(.r)] = ]x (C1i) --

Now

A(1) - 0 (C17)

B(1) = -2sf(A-Ea•kg) (C18)

where

gi - Gt(A)
We -select the Z1h's to be unity and the a&'s to be the least squares fit of

Sak[C,(.) - g&G,(z)J = z - AG,(z) (C19)

Eq.(C1O) differs slightly from the usual conditions for the a's. For very low Reynolds
numbers, this difference is significant and hence (CID) is used in the KGS and SW codes.



Appendix D: Lateral-Wall Boundary Layer Relations

From Eqs.(29-32), the boundary layer equations near the lateral wall (r = 1) can
easily be written. The subscript "b6" will denote lateral wall boundary layer functions.

= O•-e = (D2)
Or 1 a2

i(/- 1)z = R O2 (DM)

I(f - 1)U4 = i ZPM (D)4)
Re &2

The solution of Eqs.(D3-D4) can be written in the form

S= vl(x)ezp[(r - 1)/S.l + vo(z)e;zp{(ro - r)/1.j (DS)
w -= wi(x)ezpj(r - 1)/S.l + wo(z)exp(,fo - r)/6.1 (D6)

The no-slip condition at r = 1 yields
y•(1,x) = •(1,:) +t' -t-ely -- (I -f): (O7)"

'(I,=) =L(IZ)+w, +eiW,=i(l -f) (D8)

where

el exp(ro- 1)/6.1
S- ,• •

Ii - tb÷+g..

For the partial-fill cae, no shear at the free sura-fe yields

elII-I = 0 (DO)
eqi 1 - W = 0 (DIO)

Thus

*l M (I - f)= - j( gu ( 1)
I +eT -1 DI

I M , io" Z) -etWl (D12)

For a central rod,

'(Fo, z)÷e~v, ÷vQ = -(O-f)z (D13)

,i(ro,z) + ejw1 + w = i(l-f)r0 (D14)

!p r • I " 1 l'' 1I IH'I l~ ' l' [m 8p



Thus

-(I - f)z - ^,(I,x) el [ý(1,x) - ,(ro,x)]V1 2 (D15)
1 +e1 -1 e

--J - f)z - £j(ro,x) e,'Ij(l,z) - f(ro, x)]r 1+e1 +e1- e (D16)

4 i( P - f)±-0(I,z) el [,_'(I, x) - f,(ro, x)]wl = +-le (D17)

1 1 - f)ro - i(ro,x) ei(i,z) - i(ro, x)] (D1S)I + el 1 - e2

The continuity equation can now be used to obtain a relation for uAw.

rl.u(r,x) = ,.f uiexp[(r - 1)O6. - uoezp[(ro - r)/64]} (DI9)

where

= (I + 1)[2(1 -/)Re]-'"
Ul (D20)
Uo = it' o- oWo (D21)

For a partial fill,

Ul = (D22)
1 + e2

UO= elu (D23)

where

u. =-0(1 - )z- Or

For a central rod,

ul = 1 + I - (D24)

, = _- (D25)1 l 1 - r•

::here

'V = tf-- r C( [. - ...
orJ Orj_

Thum_ r - [2• ,}



uU(1,z) 1 + partial fill (D26a)

U2 =-2e A) _ rod (D26b)

uu(ro, x) = 0 partial fill (D27a)

(H u + - el rod (D27b)

\l -)
The A* terms in the rod expressions above are usually .much smaller in magnitude than

the other terms and will be neglected.

The boundary condition at r = 1 can be written as

601, X) + U(, X) + U"(1,)= -i(1 - f)X (D28)

or

6(.z) 1 -•e2) 0% r,= z -0 - f)z - IX& X) (D29)

where

e1 + e n 1 for a central rod; 2 otherwise

The boundary condition at the rod surface (r - ro) is similar to (D29):

/ .rOe2 \rN(r, z)1
t(ro,x) + 90re+6.e) , =-i(1-f)z- y,.(ro,X) (D30)
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List of Symbols

a radius of the liquid-payload cylinder

ak coefficients in a least-squares fit of z to a sine series
(ak = 0 for k = 0,2,4,...)

a,, coefficients in •he definitions of Z' kB and Z6kb, Eqs.(122-123)

A c/a, fineness (aspect) ratio of tY.e cylinder

b radius of the inner cylindrical !r" surface in a
partially-filled cylinder

T3 r-2 + A2 - i(1 - f)Re [replace Re by q2,Re for the two-liquid case]

B, [1 - (1 - q,)r- - q ro'1/4

B2 [1 - (1 - q3)rl - •,•or1/2

B3 [1 - (I - h)r' - q, rG112

C half-height of the liquiA-payloadi cylinder

co / for HSG or HSGB; = 0 otherwise

C, .onstant mult;pPers in the definiticns of Zrk, Eqs.(46-51); Fourier
coefficients chowsn to satisfy bc•Mdary cý, .uditions

C..,., C..,, C.M, that part of CLswM+ iCLIMj due to th3 pIresser on the end-walls,
lateral wall, and rod, respectively

,C.W, Claw that part of CLsA 4 iCLIAw due to the vuscow stress on the end-walls,

lateral wall, and rod, resljectiv-iy

CFD Computational Fluid Dynamics

CI.SU + iCLIM (Mr + iA,)/mLa034'rK, the liquid side moment and

in-plane moment coefficients

CLaM M.,/mL,,'taPK", the liquid roll moment coefficient

C, pres.s&e coefficient, Eq.(150)

d radius of a central rod within the cylinder
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Di, f _.4.4 .Gk (x)dx

e (R/R 0 )'/ 2 , error measure of the fit to Eqs.(101-103)

ix, ei, e0 unit vectors in the earth-fixed cylindrical system

e Y , , i, unit vectors in the earth-fixed rectangular system

e1 c, e~c, • unit vectors in the coning aeroballistic system

el exp[(ro - 1)/6a]

e2  (1 - et)/(1 + e') where n = 1 for a
.,entral rod; otherwise, n = 2

e3 *exp[(r, - 1)/6.1
ei q2 '121 + qs + (1 - qs)e'] - (1 - q,)(1 + e:)6,

es [1 + qs -(1 - qs)e']/[1 + qs + (1 - qs)e2]

e6 [1 + qs + (1 - qs)e;]f 1 .-

f (1-fi)r

/ -2i(1 - f)1(1 + f)

A [(3 - f)(1 + f)]1/ 2/(1 -

gi Gk(A), see Eq!.(101-102)

G* functions of z in the expressions for M, 1,, and p!, Eqs.(34-36); Go =x

h distance from the projectile center of mass
to the cylinder center of mass (positive if the
projectile c.m. if forward of the cylinder c.m.)

h /4.4(A), s.e Eq.(103)

Il functions of x in the expresqion for e, Eq.(33); Io I

ISG Hall-Sedney.Gerber mnethod, Rvf. (2:]

IISGB HSG Binary method



I, qlZ 4k(r)r2 dr

J0, I, complex Bessel functions of the first kind, order 0 and 1
(with argument fbAkr)

k summation index for the perturbation variables,
Eqs.(33-36), k = 0,1,2,..., N

K sin at

KGS Kitchens-Gerber-Sedney method, Ref. [10J

KGSB KGS Binary method

KO" he-4 = Koci(f#-#)

Ko the value of K at er' = 0; K = Koe"O

L h/a

f angular momentum of the liquid

mf 21ra 2 cp1

,l liquid moment

A44zJ, M ., A4 components of the liquid moment in the coning system

p liquid pressure

PO valueof pat r = O, K=O

2 ( r, r) complex pressure perturbation, nondimensionalized by pLa 2 ý2

921P
q2 VI ! t2

q93 42/I = q1/72

q4 1 for the partial fill cae; 0 otherwise

qs 11/q2
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ql, qI (for r0 < r < ,r') or 1 (for r, < r)

q2r q2 (for r < r < rr) or 1(for r, < r)

93, q3 (for r" < r < ri) or I(for r1 < r)

r,f earth-fixed and coning radial coordinates, respectively,
nondimensionalized by the radius a

r, earth-fixed radial coordinate of the cylindrical wall,
nondimensionalized by a

rf, f- earth-fixed and coning r'adial coordinates of the free surface in a
partially-filled cylinder, nondimensionalized by a

ri, Fi earth-fixed and coning radial coordinates of the two-liquid interface
(for small-amplitude coning motion), nondimensionalized by a

r,., i, earth-fixed and coning radial coordinates of the
rod, nondimensionalized by a

r0  (a) for a fully-filled cylinder, 0
(b) for a partially-filled cylinder, the radius b/a of the inner
cylindrical surface (for no coning motion)
(c) for a cylinder with a central rod, the rod radius
nondimensionalized by a

rt earth-fixed radial coordinate of the two-liquid interface (for

no coning motion), nondimensionalized by a

(rK) inner-liquid value at r,

(r•') outer-liquid value at r,

R function minimized in the determination of the ch's, Eq.(104)

A position vector

R{ } real part of a complex quantity

Re Reynolds number, 62ý/v (or, for two liquids,
eJ•/v,, the outer-liquid Reynolds number)

Re4  Re for V z V.

6 8II I Ii l l ll i ll l l



/o value of R for ck 0

R1 , R2, R3 functions used in determining the ck's, Eqs.(101-103)

S Stewartson inviscid method

SB Stewartson Binary inviscid method

SW Stewartson-Wedemeyer high-Re method

SWB Stewartson-Wedemeyer Binary high-Re method

u(r, x) complex radial velocity perturbation,
nondimensionalized by ao

x(r, x) complex azimuthal velocity perturbation,
nondimensionalized by aý

V velocity vector

V", V., VO velocity components in the earth-fixed cylindrical system

w(r, z) complex axial velocity perturbation,
nondimensionalized by a*

X, I earth-fixed &ad coning axial coordinates, respectively,

nondimensionalized by the radius a

X axis along the projectile's axis of symmetry

X., Y., Z. axes in the earth-fixed system, X. initially along
the velocity vector, Z. downward

Yo, Y, complex Bessel functions of the second kind, order 0 and 1
(with argument mAhr

Z.,* complex perturbation variables formed from (tbk,i fl, Ok, 6, t,, 0,),

Eqs.(46-51)

a(1- V - f)R2(- + f)

a4  total angle of attack; the angle between the
X and X. axes



,3 (1 + i) (1 + f)Re/2

7 COS at

66.: for Re = Re.

AZnkB Z,,ka(r+) - Z (r-), the jump in Zka at the two-liquid interface

6 (yaw damping rate)/(coning rate) = (K/K)/(ý.)

0 earth-fixed azimuthal coordinate

complex eigenfrequencies arising in the expressions for the perturbation
variables, Eqs.(33-36), where Ao = 0

AkI 0 (if k = 0), Ak (if k > 0)

A'k2 1 (if k = 0), A#, (if k > 0)

mU1, 12 outer- and inner-liquid dynamic viscosities, respectively (jA, =v 'pi)

v kinematic viscosity of the liquid

average two-liquid value of the kinematic viscosity, Eq.(126)

,,: ,,: outer- and inner-liquid kinematic viscosities, respectively

p1, (density of the liquid (or, for two liquids, the
density p, of the outer liquid)

PI. P1 outer- and inner-liquid densities, respectively

ot, the roll angle

0 spin rate (assumed positive and constant); the axial component
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of the projectile's angular velocity with respect to an inertial frame

the angle b,Žtween the Z.-axis and the
normal to the X - X. plane

precessional rate of the angular motion performed
by the projectile about the velocity vector

coning system azimuthal coordinate

. fP angular velocity of the coning aeroballistic system

Misc.:

() d( )/dt

(Y 'd( )/dr
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